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RGHRP Motivation

Rail Mainlines
——Canadian National
——Canadian Pacific
——Other Raliways
———CN - US Track Rights

P - US Track Rights

diverse physiographic regions,
soil and rock conditions,
extensive and deep ground free,;g'i‘ng,
active geomorphic processes and climate extremes.
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Canadian Railway Ground Hazard Research Program
(RGHRP) - Overview
;

Queens
Program Objectives:

To develop risk management solutions to improve safety and reduce losses from

railway ground hazards.

To meet the requirements for due diligence and standard-of-care under the Railway

Safety Act, specifically Safety Management Systems.

To provide solutions such as: ;

« application of new methodologies
for assessing hazards,

» development and refinement of
new monitoring & detection
technologies, and

« improvements to existing systems.

RGHRP Motivation
| _ Landslides, subsidence, hydraulic erosion, snow & ice result

in unsafe track at the allowable train speed.
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RGHRP Motivation
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Railways are exposed to a wider variety and

higher frequency of ground hazards, and have a

higher exposure because of curvature and grade limitations.
RESULT! Complex and uncertain ground hazards present a

significant safety and operating risk to Canadian railways.

Project Team Leaders
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RGHRP contributions

|_——"* Assessment and adoption of technologies for instrumentation,
in collaboration with vendors and research teams —
AccelArray, Geocubes, Microseismic, GPR, Acoustic waveguide,
Resistivity, LiDAR, photogrammetry, UAV.

* Instrumentation installation and interpretation, and
numerical simulation of complex mass movements,
considering groundwater and geological models.

* Risk based assessment of ground hazards, including
incident database development and analysis, probabilistic
forecasting, evaluation of frequency / magnitude concepts,
consideration of triggering activities.

* Development of practical guidelines for railway operation
teams.

* Collaboration, training and information dissemination.
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Applications of LIDAR

Natural Slope Landslide Hazard Assessment and Forecasting
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Applications of Rock block Msc Rock block Weather
Photogrammetry deformation 3D rockfall deformation influences
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forecasting Analysis of BC river (5

corridor slopes
using InSAR

D. Bonneau
Debris flow
analysis

Undergraduate Student Design Teams
-3D Hazard mapping
-3D Risk Assessment
-Cost-Benefit Mitigation Analysis
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Linear infrastructure adjacent to rock slopes
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Tunnels

Slide
detector
fences
and
Ditches
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Linear infrastructure adjacent to rock slopes @

Managing rock slope instability

—_/;

* For large, natural slopes:

—How do we identify which
features may generate failing
rocks, next?

—How do we observe and measure
the potential source zones /
failure volume?

— Can we forecast potential failure?

—Once we have identified a
potential source zone, what is the
risk to infrastructure?
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Case Study Site — L LB i . .
White Canyon, British Columbia . | - White Canyon Study Site

- - Queen's
Quartzofeldspathic Gneiss ~ Dioritic Intrusions Tonalite Dykes Groecharics g
White Canyon Study Site @ Remote Sensing techniques
Queens ALS Fixed-wing Queens
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Active rockfall zone.

apps ALS Helicopter
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* Source of rockfalls, agh50-150m
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Overview of Methods Deployed at White Canyon

Terrestrial Laser Aerial Laser T trial UAV
Scanning (TLS) A . . errestria
g scanning (ALS) ekl e Photogrammetry Photogrammetry

[2012 - Present] [Fall 2014; [2014 — Present]
Fall 2015] [2014 - Present] [August 2016]

Helicopter
Photogrammetry

[October 2016]

[March 2014 -

June 2015]
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GigaPan Imaging

LiDAR Point Cloud

Ryan Kromer
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Steps to produce a Change Detection Map,
between sequential scans

Align scan boxes, then ICP alignment

‘ Generate Mesh of Point Cloud

Ryan Kromer and Megan van Veen

Visualization of the results

Change detection from 3-D models
Feature observation from GigaPan

{.  Comparison —5 month period

Queens
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Ashcroft Mile 109.4
Comparison Dates: 2017-04-08 to 2017-05-23

Alex Graham

Occlusions in Terrestrial Laser Scanning

(van Veen, 2016)
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Photogrammetry

Photogrammetry revolutionized by Structure From Motion processing — Agisoft PhotoScan

Gauthier et al, 2015
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Photogrammetry

Terrestrial Terrestrial + UAV

Connor Meeks and David Bonneau
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Photogrammetry
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Active rock slope — LiDAR change detection

Matt Lato
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Rock slope failure case history

2600 m? failure June 2013

29

Structural Analysis of Failure

Matt Lato
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Rockfall History
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Identifying Rock Slope Failure Precursors
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Forecasting Failure

Kromer et al, 2016
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Rockfall Database Development

32.6 m? Rockfall

 —

van Veen et al, 2017

Rockfall Database

Scan Interval (time)
Rockfall location
Rockfall magnitude

Expected/observed
structure and failure
mechanism

Source zone lithology

Rock quality estimate
(GSl)

Yvan woiy

5030y Wo.4

Queer's
Geomechanics
Group




Extracting rockfall data
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Data Analysis - Lithology

van Veen et al, 2017

(van Veen 2016)
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Data Analysis - Volume
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Rockfall Block Deformation Analysis
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Comparison Dates:
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Rowe et al, 2016
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Rockfall Block Deformation Analysis
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Rockfall Block Structural Analysis

Rowe et al, 2016
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Rockfall Block Structural Analysis

Rowe et al, 2016
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Determining warning thresholds for
different failure mechanisms
’/;

Planar Sliding Toppling

Wedge Failure
=

Hoek et al. 1974 Hoek et al. 1974

Rotational Failure Overhang N

Failure %

Emily Rowe
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Modelling Rockfalls using Game Engines

/
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¢ Fully 3D

* Built-in physics
— NVIDIA PhysX Engine
— Robust collision detection
— Rigidbody dynamics

* Intuitive development environment
— Pre-existing 3D coordinate system
— Realistic visualization through lighting and texture
— Modular and object-oriented
— Fully scriptable (C# or JavaScript)

* Regularly updated
— Freely available
— Supported by large community of developers

Zac Sala
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Conceptual failure mechanism behaviour
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Calibration of rockfall simulation via path analysis

Ondercin et al, 2015
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August 2015 Event

1.4 m* Rockfall

Deposition adjacent
to track
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Incorporating True Shape
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Kromer, 2017

Real Time Terrestrial Monitoring

TLS Data Acquisition
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Real Time Terrestrial Monitoring
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! Response based on:

d. !
Focus search on future ‘where’ rocks will fall 3. LEARN
- Block monitoring
B
1 '+ Focus action on ‘what’ could happen H
! | - Evaluate consequences i
2. ACTION . ---_-- ) -
: ¢ Focus action on future ‘when’ rock will fall '
I : - Trigger analysis and rackfall history
Y.

- Potential or probability of impact and ¢ q es and risk

: - Opportunity for improving future forecast

Gauthier, Strouth and Hutchinson, 2017
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Real Time Terrestrial Monitoring
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ALS Pointcloud with Color from Orthoimagery ; | ALS Pointcloud Classified into Rock and Vegetation

Point ID:1112456
X:394.75

Y: -217.62
Z:223.96

R: 190

G:182

B: 178

Richard Carter
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Gigapixel Image

Point 1D:1112456
X:394.75
Y:-217.62
Z:223.96

R: 190

G:182

B:178

Rock: 1
Curvature: 0.02

High Curvature
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Richa ra&ame.r with Curvature Calculation |
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High Curvature

IF ROCK = YES AND
DISTRIBUTION OF SURROUNDING CURVATURE VALUES = NORMAL AND
MAIJORITY OF NEIGHBORS = ROCK

Geomechanics

Richard Carter Grow

l High Curvature

I Low Curvature

IF NOT STEEP AND
IF ROCK = YES AND
DISTRIBUTION OF SURROUNDING CURVATURE VALUES = NOT NORMAL AND
MAJORITY OF NEIGHBORS = ROCK

Geomechanics

Richard Carter Grow

POINT CLASSIFICATION = ROCK DEPOSIT Queerts g

POINT CLASSIFICATION = OUTCROP Queer's g

Point ID:1112456
X:394.75
Y:-217.62
7:223.96

R: 190

G:182

B:178

Rock: 1
Curvature: 0.02
Dip: 58.3

Dip Direction:291.47

Gigapixel Image

ﬂ*

ALS Pointcloud with Slope Angle

Richard Carter

Group

ALS Pointcloud with Slope Direction Queen's
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Conclusions

|
———

* Remotely sensed detailed 3-D geometrical models are superb data sets for
slope stability analysis, particularly if:
— Models taken from multiple vantage points are available,
—Time sequential models can be compared.
* RS techniques are more versatile than ever before, due to:
— High rate of acquisition of detailed data,
— New techniques to build data sets, through intelligent and selective alignment
processes,
— Software packages readily available to work with data, and
— Visualization tools to display the data easily.
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Potential Precision by Method
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Conclusions

L
/

* Repeated scans of rock slopes allow:

— Detection of very small, precursor changes, not sufficient to damage
infrastructure, but as indicators of larger scale failure potential.

— Detection of sub-cm scale deformation, permitting analysis of deformation rates
over time, and type of movement whether accelerating, stick-slip, or steady state.

— Forecast of impending rock slope failure.

— Identification of rock slope failures at a wide range of volumes for analysis and for
calibration data sets for new generation rockfall modelling.
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Next steps — data collection

Autonomous Flight / Landing
More precise altitude control
Longer Flying Times

Larger Payload :
| Decreasing size and weight of instruments

S
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Geomechanics
Group

16



Next Steps

/
—

Development of data processing methods to permit increasingly precise and
accurate interpretation — underway by R. Kromer.

Definition of appropriate methods, and frequency of scans, depending upon
requirements: general review of rock slope instability or detailed
geomorphological analysis — underway by A. Graham for rockfalls and D.
Bonneau for debris channels.

Expand change detection capabilities to larger scales, other forms of remote
sensing, including aerial LIDAR — underway by R. Carter; and satellite based —
underway by R. Hudson.

Move towards pro-active rock slope risk management via monitoring and
calibrated modelling — underway by Z. Sala.

Detailed analysis of weather and climate impacts on frequency and magnitude
of failure.
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Thank you for your attention
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